Unsupervised Learning of True Ranking Estimators using the Belief Function Framework
نویسندگان
چکیده
A variant of the ranking aggregation problem is considered in this work. The goal is to find an approximation of an unknown true ranking given a set of rankings. We devise a solution called Belief Ranking Estimator (BRE), based on the belief function framework that permits to represent beliefs on the correctness of the rankings position as well as uncertainty on the quality of the rankings from the subjective point of view of the expert. The results of a preliminary empirical comparison of BRE against baseline ranking estimators and state-of-the-art methods for ranking aggregation are shown and discussed.
منابع مشابه
Ranking Aggregation Based on Belief Function Theory
The ranking aggregation problem is that to establishing a new aggregate ranking given a set of rankings of a finite set of items. This problem is met in various applications, such as the combination of user preferences, the combination of lists of documents retrieved by search engines and the combination of ranked gene lists. In the literature, the ranking aggregation problem has been solved as...
متن کاملTwo-Stage Learning to Rank for Information Retrieval
Current learning to rank approaches commonly focus on learning the best possible ranking function given a small fixed set of documents. This document set is often retrieved from the collection using a simple unsupervised bag-of-words method, e.g. BM25. This can potentially lead to learning a sub-optimal ranking, since many relevant documents may be excluded from the initially retrieved set. In ...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملFast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011